We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Advances in nanomedicines: a promising therapeutic strategy for ischemic cerebral stroke treatment

    Jun Li‡

    Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, PR China

    Beijing Molecular Hydrogen Research Center, Beijing, 100124, PR China

    ‡Authors contributed equally

    Search for more papers by this author

    ,
    Fei Xie‡

    Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, PR China

    Beijing Molecular Hydrogen Research Center, Beijing, 100124, PR China

    ‡Authors contributed equally

    Search for more papers by this author

    &
    Xuemei Ma

    *Author for correspondence:

    E-mail Address: xmma@bjut.edu.cn

    Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, PR China

    Beijing Molecular Hydrogen Research Center, Beijing, 100124, PR China

    Published Online:https://doi.org/10.2217/nnm-2023-0266

    Ischemic stroke, prevalent among the elderly, necessitates attention to reperfusion injury post treatment. Limited drug access to the brain, owing to the blood–brain barrier, restricts clinical applications. Identifying efficient drug carriers capable of penetrating this barrier is crucial. Blood–brain barrier transporters play a vital role in nutrient transport to the brain. Recently, nanoparticles emerged as drug carriers, enhancing drug permeability via surface-modified ligands. This article introduces the blood–brain barrier structure, elucidates reperfusion injury pathogenesis, compiles ischemic stroke treatment drugs, explores nanomaterials for drug encapsulation and emphasizes their advantages over conventional drugs. Utilizing nanoparticles as drug-delivery systems offers targeting and efficiency benefits absent in traditional drugs. The prospects for nanomedicine in stroke treatment are promising.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Ghaffari A, Akbarfahimi M, Rostami HR. Discriminative factors for post-stroke depression. Asian J. Psychiatr. 48, 101863 (2020).
    • 2. Fifield KE, Vanderluit JL. Rapid degeneration of neurons in the penumbra region following a small, focal ischemic stroke. Eur. J. Neurosci. 52(4), 3196–3214 (2020).
    • 3. Kluge MG, Jones K, Kooi Ong L et al. Age-dependent disturbances of neuronal and glial protein expression profiles in areas of secondary neurodegeneration post-stroke. Neuroscience 393, 185–195 (2018).
    • 4. Chamorro Á, Lo EH, Renú A, Van Leyen K, Lyden PD. The future of neuroprotection in stroke. J. Neurol. Neurosurg. Psychiatry 92(2), 129–135 (2021).
    • 5. Chen Z, Liu P, Xia X, Wang L, Li X. The underlying mechanism of PM2.5-induced ischemic stroke. Environ. Pollut. 310, 119827 (2022).
    • 6. Wu Q, Yan R, Sun J. Probing the drug delivery strategies in ischemic stroke therapy. Drug Deliv. 27(1), 1644–1655 (2020).
    • 7. Kakaletsis N, Ntaios G, Milionis H et al. Time of blood pressure in target range in acute ischemic stroke. J. Hypertens. 41(2), 303–309 (2023).
    • 8. Zubair AS, Sheth KN. Hemorrhagic conversion of acute ischemic stroke. Neurotherapeutics 20(3), 705–711 (2023).
    • 9. Katsanos AH, Malhotra K, Goyal N et al. Intravenous thrombolysis prior to mechanical thrombectomy in large vessel occlusions. Ann. Neurol. 86(3), 395–406 (2019).
    • 10. Xu ZH, Deng QW, Zhai Q et al. Clinical significance of stroke nurse in patients with acute ischemic stroke receiving intravenous thrombolysis. BMC Neurol. 21(1), 359 (2021).
    • 11. Xu Y, Chen D, Liu P et al. A triple fusion tissue-type plasminogen activator (TriF-ΔtPA) enhanced thrombolysis in carotid embolism-induced stroke model. Int. J. Pharm. 637, 122878 (2023).
    • 12. Capitanescu C, Macovei Oprescu AM, Ionita D et al. Molecular processes in the streptokinase thrombolytic therapy. J. Enzyme Inhib. Med. Chem. 31(6), 1411–1414 (2016).
    • 13. Florova G, De Vera CJ, Emerine RL et al. Targeting the PAI-1 mechanism with a small peptide increases the efficacy of alteplase in a rabbit model of chronic empyema. Pharmaceutics 15(5), DOI: 10.3390/pharmaceutics15051498 (2023).
    • 14. Zhang N, Li C, Zhou D et al. Cyclic RGD functionalized liposomes encapsulating urokinase for thrombolysis. Acta Biomater. 70, 227–236 (2018).
    • 15. Zuba V, Furon J, Bellemain-Sagnard M et al. The choroid plexus: a door between the blood and the brain for tissue-type plasminogen activator. Fluids Barriers CNS 19(1), 80 (2022).
    • 16. Chen S, Chen D, Liu Y et al. Enhanced clot lysis by a single point mutation in a reteplase variant. Br. J. Haematol. 196(4), 1076–1085 (2022).
    • 17. Johansen MC, Campbell BCV. ANA Investigates: tenecteplase. Ann. Neurol. 90(1), 1–3 (2021).
    • 18. Wang LC, Wei WY, Ho PC, Wu PY, Chu YP, Tsai KJ. Somatosensory cortical electrical stimulation after reperfusion attenuates ischemia/reperfusion injury of rat brain. Front. Aging Neurosci. 13, 741168 (2021). •• Provides a detailed introduction to the pathogenesis of stroke.
    • 19. Garden GA, Campbell BM. Glial biomarkers in human central nervous system disease. Glia 64(10), 1755–1771 (2016).
    • 20. Gauberti M, Lapergue B, De Martinez Lizarrondo S et al. Ischemia–reperfusion injury after endovascular thrombectomy for ischemic stroke. Stroke 49(12), 3071–3074 (2018).
    • 21. Chang CY, Chen JY, Wu MH, Hu ML. Therapeutic treatment with vitamin C reduces focal cerebral ischemia-induced brain infarction in rats by attenuating disruptions of blood–brain barrier and cerebral neuronal apoptosis. Free Radic. Biol. Med. 155, 29–36 (2020).
    • 22. Geier EG, Chen EC, Webb A et al. Profiling solute carrier transporters in the human blood–brain barrier. Clin. Pharmacol. Ther. 94(6), 636–639 (2013).
    • 23. Latif S, Kang YS. Blood–brain barrier solute carrier transporters and motor neuron disease. Pharmaceutics 14(10), DOI: 10.3390/pharmaceutics14102167 (2022).
    • 24. Zhang W, Sigdel G, Mintz KJ et al. Carbon dots: a future blood–brain barrier penetrating nanomedicine and drug nanocarrier. Int. J. Nanomed. 16, 5003–5016 (2021).
    • 25. Mochizuki T, Mizuno T, Kurosawa T et al. Functional investigation of solute carrier family 35, member F2, in three cellular models of the primate blood–brain barrier. Drug Metab. Dispos. 49(1), 3–11 (2021).
    • 26. Van Lengerich B, Zhan L, Xia D et al. A TREM2-activating antibody with a blood–brain barrier transport vehicle enhances microglial metabolism in Alzheimer’s disease models. Nat. Neurosci. 26(3), 416–429 (2023).
    • 27. Feng W, Chen Y. Chemoreactive nanomedicine. J. Mater. Chem. B 8(31), 6753–6764 (2020).
    • 28. Nagase T, Kin K, Yasuhara T. Targeting neurogenesis in seeking novel treatments for ischemic stroke. Biomedicines 11(10), DOI: 10.3390/biomedicines11102773 (2023).
    • 29. Sofias AM, Lammers T. Multidrug nanomedicine. Nat. Nanotechnol. 18(2), 104–106 (2023). •• Introduces the molecular properties of nanomaterials, providing a reference for the synthesis and loading of nanomedicines.
    • 30. Yu W, Yin N, Yang Y et al. Rescuing ischemic stroke by biomimetic nanovesicles through accelerated thrombolysis and sequential ischemia–reperfusion protection. Acta Biomater. 140, 625–640 (2022).
    • 31. Quan X, Han Y, Lu P et al. Annexin V-modified platelet-biomimetic nanomedicine for targeted therapy of acute ischemic stroke. Adv. Healthc. Mater. 11(16), e2200416 (2022).
    • 32. Chen J, Jin J, Li K, Shi L, Wen X, Fang F. Progresses and prospects of neuroprotective agents-loaded nanoparticles and biomimetic material in ischemic stroke. Front. Cell. Neurosci. 16, 868323 (2022).
    • 33. Wu D, Chen Q, Chen X, Han F, Chen Z, Wang Y. The blood–brain barrier: structure, regulation, and drug delivery. Signal Transduct. Target. Ther. 8(1), 217 (2023).
    • 34. Guo M, Sun X, Chen J, Cai T. Pharmaceutical cocrystals: a review of preparations, physicochemical properties and applications. Acta Pharm. Sin. B 11(8), 2537–2564 (2021).
    • 35. Sasson E, Anzi S, Bell B et al. Nano-scale architecture of blood–brain barrier tight-junctions. eLife 10, e63253 (2021).
    • 36. Faria-Pereira A, Morais VA. Synapses: the brain's energy-demanding sites. Int. J. Mol. Sci. 23(7), 3627 (2022).
    • 37. Nguyen YTK, Ha HTT, Nguyen TH, Nguyen LN. The role of SLC transporters for brain health and disease. Cell Mol. Life Sci. 79(1), 20 (2021).
    • 38. Grube M, Hagen P, Jedlitschky G. Neurosteroid transport in the brain: role of ABC and SLC transporters. Front. Pharmacol. 9, 354 (2018).
    • 39. Brenza TM, Schlichtmann BW, Bhargavan B et al. Biodegradable polyanhydride-based nanomedicines for blood to brain drug delivery. J. Biomed. Mater. Res. A 106(11), 2881–2890 (2018).
    • 40. Chen SQ, Wang C, Tao S, Wang YX, Hu FQ, Yuan H. Rational design of redox-responsive and p-gp-inhibitory lipid nanoparticles with high entrapment of paclitaxel for tumor therapy. Adv. Healthc. Mater. 7(17), e1800485 (2018).
    • 41. Pathan N, Shende P. Tailoring of P-glycoprotein for effective transportation of actives across blood–brain-barrier. J. Control. Rel. 335, 398–407 (2021).
    • 42. Bai X, Moraes TF, Reithmeier RAF. Structural biology of solute carrier (SLC) membrane transport proteins. Mol. Membr. Biol. 34(1–2), 1–32 (2017).
    • 43. Seo E, Jee B, Chung JH et al. Repression of SLC22A3 by the AR-V7/YAP1/TAZ axis in enzalutamide-resistant castration-resistant prostate cancer. FEBS J. 290(6), 1645–1662 (2023).
    • 44. Ullman JC, Arguello A, Getz JA et al. Brain delivery and activity of a lysosomal enzyme using a blood–brain barrier transport vehicle in mice. Sci. Transl. Med. 12(545), DOI: 10.1126/scitranslmed.aay1163 (2020).
    • 45. Zhao Z, Ukidve A, Krishnan V, Mitragotri S. Effect of physicochemical and surface properties on in vivo fate of drug nanocarriers. Adv. Drug Deliv. Rev. 143, 3–21 (2019).
    • 46. Anand A, Sugumaran A, Narayanasamy D. Brain targeted delivery of anticancer drugs: prospective approach using solid lipid nanoparticles. IET Nanobiotechnol. 13(4), 353–362 (2019).
    • 47. Du Y, Gao J, Zhang H et al. Brain-targeting delivery of MMB4 DMS using carrier-free nanomedicine CRT-MMB4@MDZ. Drug Deliv. 28(1), 1822–1835 (2021).
    • 48. Chen X, Zhao Y, He C et al. Identification of a novel GLUT1 inhibitor with in vitro and in vivo anti-tumor activity. Int. J. Biol. Macromol. 216, 768–778 (2022).
    • 49. Strubbe-Rivera JO, Chen J, West BA, Parent KN, Wei GW, Bazil JN. Modeling the effects of calcium overload on mitochondrial ultrastructural remodeling. Appl. Sci. 11(5), DOI: 10.3390/app11052071 (2021). •• Introduces the destructive effect of free radicals on cells themselves, including the process of distance, which is very detailed.
    • 50. Wen B, Xu K, Huang R et al. Preserving mitochondrial function by inhibiting GRP75 ameliorates neuron injury under ischemic stroke. Mol. Med. Rep. 25(5), DOI: 10.3892/mmr.2022.12681 (2022).
    • 51. Collard CD, Gelman S. Pathophysiology, clinical manifestations, and prevention of ischemia-reperfusion injury. Anesthesiology 94, 1133–1138 (2001).
    • 52. Yao J, Peng H, Qiu Y et al. Nanoplatform-mediated calcium overload for cancer therapy. J. Mater. Chem. B 10(10), 1508–1519 (2022).
    • 53. Gorica E, Calderone V. Arachidonic acid derivatives and neuroinflammation. CNS Neurol. Disord. Drug Targets 21(2), 118–129 (2022).
    • 54. Menezes LB, Segat BB, Tolentino H et al. ROS scavenging of SOD/CAT mimics probed by EPR and reduction of lipid peroxidation in S. cerevisiae and mouse liver, under severe hydroxyl radical stress condition. J. Inorg. Biochem. 239, 112062 (2023).
    • 55. Du W, Wang J, Zhou L et al. Transferrin-targeted iridium nanoagglomerates with multi-enzyme activities for cerebral ischemia–reperfusion injury therapy. Acta Biomater. 166, 524–535 (2023).
    • 56. Kapoor M, Sharma N, Sandhir R, Nehru B. Effect of the NADPH oxidase inhibitor apocynin on ischemia–reperfusion hippocampus injury in rat brain. Biomed. Pharmacother. 97, 458–472 (2018).
    • 57. Tang X, Zhong W, Tu Q, Ding B. NADPH oxidase mediates the expression of MMP-9 in cerebral tissue after ischemia–reperfusion damage. Neurol. Res. 36(2), 118–125 (2014).
    • 58. Fujii J, Osaki T. Involvement of nitric oxide in protecting against radical species and autoregulation of M1-polarized macrophages through metabolic remodeling. Molecules 28(2), DOI: 10.3390/molecules28020814 (2023).
    • 59. Fedotcheva T, Shimanovsky N, Fedotcheva N. Specific features of mitochondrial dysfunction under conditions of ferroptosis induced by t-butylhydroperoxide and iron: protective role of the inhibitors of lipid peroxidation and mitochondrial permeability transition pore opening. Membranes 13(4), DOI: 10.3390/membranes13040372 (2023).
    • 60. Łukawski K, Czuczwar SJ. Oxidative stress and neurodegeneration in animal models of seizures and epilepsy. Antioxidants 12(5), DOI: 10.3390/antiox12051049 (2023).
    • 61. Lee KH, Ha SJ, Woo JS et al. Exenatide prevents morphological and structural changes of mitochondria following ischaemia–reperfusion injury. Heart Lung Circ. 26(5), 519–523 (2017).
    • 62. Peng JF, Salami OM, Habimana O, Xie YX, Yao H, Yi GH. Targeted mitochondrial drugs for treatment of ischemia–reperfusion injury. Curr. Drug Targets 23(16), 1526–1536 (2022).
    • 63. Speijer D. How mitochondria showcase evolutionary mechanisms and the importance of oxygen. BioEssays 45(6), e2300013 (2023).
    • 64. Yin X, Wang J, Yang S et al. SAM50 exerts neuroprotection by maintaining the mitochondrial structure during experimental cerebral ischemia/reperfusion injury in rats. CNS Neurosci. Ther. 28(12), 2230–2244 (2022).
    • 65. Monzel AS, Enríquez JA, Picard M. Multifaceted mitochondria: moving mitochondrial science beyond function and dysfunction. Nat. Metab. 5(4), 546–562 (2023).
    • 66. Guan X, Wei D, Liang Z et al. FDCA attenuates neuroinflammation and brain injury after cerebral ischemic stroke. ACS Chem. Neurosci. DOI: 10.1021/acschemneuro.3c00456 (2023).
    • 67. Wang J, Hu Z, Yang S et al. Inflammatory cytokines and cells are potential markers for patients with cerebral apoplexy in intensive care unit. Exp. Ther. Med. 16, 1014–1020 (2018).
    • 68. Wytrykowska A, Prosba-Mackiewicz M, Nyka WM. IL-1β, TNF-α, and IL-6 levels in gingival fluid and serum of patients with ischemic stroke. J. Oral Sci. 58(4), 509–513 (2016).
    • 69. Yoshida M, Kato N, Uemura T et al. Time dependent transition of the levels of protein-conjugated acrolein (PC-Acro), IL-6 and CRP in plasma during stroke. eNeurologicalSci 7, 18–24 (2017).
    • 70. Thammisetty SS, Pedragosa J, Weng YC, Calon F, Planas A, Kriz J. Age-related deregulation of TDP-43 after stroke enhances NF-κB-mediated inflammation and neuronal damage. J. Neuroinflamm. 15(1), DOI: 10.1186/s12974-018-1350-y (2018).
    • 71. Chen R, Jiang G, Liu Y et al. Predictive effects of S100β and CRP levels on hemorrhagic transformation in patients with AIS after intravenous thrombolysis: a concise review based on our center experience. Medicine 102(38), DOI: 10.1097/md.0000000000035149 (2023).
    • 72. Zhang D, Yuan D, Shen J et al. Up-regulation of VCAM1 relates to neuronal apoptosis after intracerebral hemorrhage in adult rats. Neurochem. Res. 40(5), 1042–1052 (2015).
    • 73. Wang D, Li L, Zhang Q et al. Combination of electroacupuncture and constraint-induced movement therapy enhances functional recovery after ischemic stroke in rats. J. Mol. Neurosci. 71(10), 2116–2125 (2021).
    • 74. Lim S, Kim TJ, Kim YJ, Kim C, Ko SB, Kim BS. Senolytic therapy for cerebral ischemia–reperfusion injury. Int. J. Mol. Sci. 22(21), DOI: 10.3390/ijms222111967 (2021).
    • 75. Liu YS, Zhang GY, Hou Y. Theoretical and experimental investigation of the antioxidation mechanism of loureirin C by radical scavenging for treatment of stroke. Molecules 28(1), DOI: 10.3390/molecules28010380 (2023).
    • 76. Preskorn SH. CNS drug development, lessons learned, part 4: the role of brain circuitry and genes – tasimelteon as an example. J. Psychiatr. 23(6), 425–430 (2017).
    • 77. Xiong LL, Chen L, Deng IB, Zhou XF, Wang TH. P75 neurotrophin receptor as a therapeutic target for drug development to treat neurological diseases. Eur. J. Neurosci. 56(8), 5299–5318 (2022).
    • 78. Zhao N, Gao Y, Jia H, Jiang X. Anti-apoptosis effect of traditional Chinese medicine in the treatment of cerebral ischemia–reperfusion injury. Apoptosis 28(5–6), 702–729 (2023).
    • 79. Matsuoka Y, Yamada KI. Detection and structural analysis of lipid-derived radicals in vitro and in vivo. Free Radic. Res. 55(4), 441–449 (2021).
    • 80. Lee IS, Kullmann S, Scheffler K, Preissl H, Enck P. Fat label compared with fat content: gastrointestinal symptoms and brain activity in functional dyspepsia patients and healthy controls. Am. J. Clin. Nutr. 108(1), 127–135 (2018).
    • 81. Morita M, Naito Y, Itoh Y, Niki E. Comparative study on the plasma lipid oxidation induced by peroxynitrite and peroxyl radicals and its inhibition by antioxidants. Free Radic. Res. 53(11–12), 1101–1113 (2019).
    • 82. Yoo JY, Lee YJ, Kim YJ et al. Multiple low-dose radiation-induced neuronal cysteine transporter expression and oxidative stress are rescued by N-acetylcysteine in neuronal SH-SY5Y cells. Neurotoxicology 95, 205–217 (2023).
    • 83. Shibuya K, Otani R, Suzuki YI, Kuwabara S, Kiernan MC. Neuronal hyperexcitability and free radical toxicity in amyotrophic lateral sclerosis: established and future targets. Pharmaceuticals 15(4), DOI: 10.3390/ph15040433 (2022).
    • 84. Homma T, Kobayashi S, Sato H, Fujii J. Edaravone, a free radical scavenger, protects against ferroptotic cell death in vitro. Exp. Cell Res. 384(1), 111592 (2019).
    • 85. Fogelholm R, Palomäki H, Erilä T, Rissanen A, Kaste M. Blood pressure, nimodipine, and outcome of ischemic stroke. Acta Neurol. Scand. 109(3), 200–204 (2004).
    • 86. Yu Y, Feng J, Lian N et al. Hydrogen gas alleviates blood–brain barrier impairment and cognitive dysfunction of septic mice in an Nrf2-dependent pathway. Int. Immunopharmacol. 85(106585), 21 (2020).
    • 87. Rao AK, Vaidyula VR, Bagga S et al. Effect of antiplatelet agents clopidogrel, aspirin, and cilostazol on circulating tissue factor procoagulant activity in patients with peripheral arterial disease. Thromb. Haemost. 96(6), 738–743 (2006).
    • 88. Zhao Z, Ma Y, Liu Q et al. Effects of different doses of clopidogrel plus early rehabilitation therapy on motor function and inflammatory factors in patients with ischemic stroke. Evid. Based Complement. Alternat. Med. 2022, 9692382 (2022).
    • 89. Liu Y, Yin Y, Lu QL et al. Vinpocetine in the treatment of poststroke cognitive dysfunction: a protocol for systematic review and meta-analysis. Medicine 98(6), e13685 (2019).
    • 90. Milcan A, Arslan E, Bagdatoglu OT et al. The effect of alprostadil on ischemia–reperfusion injury of peripheral nerve in rats. Pharmacol. Res. 49(1), 67–72 (2004).
    • 91. Li D, Zhao S, Zhu B et al. Cinepazide maleate promotes recovery from spinal cord injury by inhibiting inflammation and prolonging neuronal survival. Drug Dev. Res. 84(4), 736–746 (2023).
    • 92. Zhang J, Zhang X, Shang Y, Zhang L. Effect of cinepazide maleate on serum inflammatory factors of ICU patients with severe cerebral hemorrhage after surgery. Evid. Based Complement. Alternat. Med. 2021, 6562140 (2021).
    • 93. Li L, Lou X, Zhang K, Yu F, Zhao Y, Jiang P. Hydrochloride fasudil attenuates brain injury in ICH rats. Transl. Neurosci. 11(1), 75–86 (2020).
    • 94. Kecskés S, Menyhárt Á, Bari F, Farkas E. Nimodipine augments cerebrovascular reactivity in aging but runs the risk of local perfusion reduction in acute cerebral ischemia. Front. Aging Neurosci. 15, 1175281 (2023).
    • 95. Yuan LL, Chen TY, Huang ZQ. Effects of paroxetine hydrochloride combined with idebenone on inflammatory factors and antioxidant molecules in treatment of depression after ischemic stroke. Pak. J. Med. Sci. 39(1), 17–22 (2023).
    • 96. Özalp B, Elbey H, Aydın H, Tekkesin MS, Uzun H. The effect of coenzyme Q10 on venous ischemia reperfusion injury. J. Surg. Res. 204(2), 304–310 (2016).
    • 97. Lu CJ, Guo YZ, Zhang Y et al. Coenzyme Q10 ameliorates cerebral ischemia reperfusion injury in hyperglycemic rats. Pathol. Res. Pract. 213(9), 1191–1199 (2017).
    • 98. Overgaard K. The effects of citicoline on acute ischemic stroke: a review. J. Stroke Cerebrovasc. Dis. 23(7), 1764–1769 (2014).
    • 99. Shavlovskaya OA. The assessment of the efficacy of citicoline in the early and recovery stages of stroke. Zh. Nevrol. Psikhiatr. Im. SS Korsakova 116(6), 93–97 (2016).
    • 100. Stein DJ, Daniels WM, Savitz J, Harvey BH. Brain-derived neurotrophic factor: the neurotrophin hypothesis of psychopathology. CNS Spectr. 13(11), 945–949 (2008).
    • 101. Hishiyama S, Kotoda M, Ishiyama T, Mitsui K, Matsukawa T. Neuroprotective effects of neurotropin in a mouse model of hypoxic–ischemic brain injury. J. Anesth. 33(4), 495–500 (2019).
    • 102. Wang J, Sun R, Li Z, Pan Y. Combined bone marrow stromal cells and oxiracetam treatments ameliorates acute cerebral ischemia/reperfusion injury through TRPC6. Acta Biochim. Biophys Sin. 51(8), 767–777 (2019).
    • 103. Ricci S, Celani MG, Cantisani TA, Righetti E. Piracetam for acute ischaemic stroke. Cochrane Database Syst. Rev. 2012(9), CD000419 (2012).
    • 104. Azouz AA, Hersi F, Ali FEM, Hussein Elkelawy AMM, Omar HA. Renoprotective effect of vinpocetine against ischemia/reperfusion injury: modulation of NADPH oxidase/Nrf2, IKKβ/NF-κB p65, and cleaved caspase-3 expressions. J. Biochem. Mol. Toxicol. 36(7), e23046 (2022).
    • 105. Ren Y, Ma X, Wang T et al. The cerebroprotein hydrolysate-I plays a neuroprotective effect on cerebral ischemic stroke by inhibiting MEK/ERK1/2 signaling pathway in rats. Neuropsychiatr. Dis. Treat. 17, 2199–2208 (2021).
    • 106. Sui R, Zang L, Bai Y. Administration of troxerutin and cerebroprotein hydrolysate injection alleviates cerebral ischemia/reperfusion injury by down-regulating caspase molecules. Neuropsychiatr. Dis. Treat. 15, 2345–2352 (2019).
    • 107. Fukuta T, Ikeda-Imafuku M, Iwao Y. Development of edaravone ionic liquids and their application for the treatment of cerebral ischemia/reperfusion injury. Mol. Pharm. 20(6), 3115–3126 (2023).
    • 108. Schnaar RL. Gangliosides of the vertebrate nervous system. J. Mol. Biol. 428(16), 3325–3336 (2016).
    • 109. Li L, Medina-Menéndez C, García-Corzo L et al. SoxD genes are required for adult neural stem cell activation. Cell Rep. 38(5), 110313 (2022).
    • 110. Tian Z, Zhao Q, Biswas S, Deng W. Methods of reactivation and reprogramming of neural stem cells for neural repair. Methods 133, 3–20 (2018).
    • 111. Chiang MC, Cheng YC, Chen SJ, Yen CH, Huang RN. Metformin activation of AMPK-dependent pathways is neuroprotective in human neural stem cells against amyloid-beta-induced mitochondrial dysfunction. Exp. Cell Res. 347(2), 322–331 (2016). • Introduces the BCL2 gene related to neuroprotective effects, and describes that the emerging hydrogen gas can also promote its expression.
    • 112. Shi W, Bi S, Dai Y, Yang K, Zhao Y, Zhang Z. Clobetasol propionate enhances neural stem cell and oligodendrocyte differentiation. Exp. Ther. Med. 18(2), 1258–1266 (2019).
    • 113. Vicario N, Bernstock JD, Spitale FM et al. Clobetasol modulates adult neural stem cell growth via canonical Hedgehog pathway activation. Int. J. Mol. Sci. 20(8), DOI: 10.3390/ijms20081991 (2019).
    • 114. Lin B, Lu L, Wang Y et al. Nanomedicine directs neuronal differentiation of neural stem cells via silencing long noncoding RNA for stroke therapy. Nano Lett. 21(1), 806–815 (2021).
    • 115. Soares R, Ribeiro FF, Xapelli S et al. Tauroursodeoxycholic acid enhances mitochondrial biogenesis, neural stem cell pool, and early neurogenesis in adult rats. Mol. Neurobiol. 55(5), 3725–3738 (2018).
    • 116. Fernandes MB, Costa M, Ribeiro MF et al. Reprogramming of lipid metabolism as a new driving force behind tauroursodeoxycholic acid-induced neural stem cell proliferation. Front. Cell. Dev. Biol. 8, 335 (2020).
    • 117. Kemp JA, Shim MS, Heo CY, Kwon YJ. ‘Combo’ nanomedicine: co-delivery of multi-modal therapeutics for efficient, targeted, and safe cancer therapy. Adv. Drug Deliv. Rev. 98, 3–18 (2016).
    • 118. Bilia AR, Piazzini V, Guccione C et al. Improving on nature: the role of nanomedicine in the development of clinical natural drugs. Planta Med. 83(5), 366–381 (2017).
    • 119. Abbasi S, Sato Y, Kajimoto K, Harashima H. New design strategies for controlling the rate of hydrophobic drug release from nanoemulsions in blood circulation. Mol. Pharm. 17(10), 3773–3782 (2020).
    • 120. Tuguntaev RG, Hussain A, Fu C et al. Bioimaging guided pharmaceutical evaluations of nanomedicines for clinical translations. J. Nanobiotechnol. 20(1), 236 (2022).
    • 121. Vanden-Hehir S, Tipping WJ, Lee M, Brunton VG, Williams A, Hulme AN. Raman imaging of nanocarriers for drug delivery. Nanomaterials 9(3), DOI: 10.3390/nano9030341 (2019).
    • 122. Sarkar A, Fatima I, Jamal QMS et al. Nanoparticles as a carrier system for drug delivery across blood brain barrier. Curr. Drug Metab. 18(2), 129–137 (2017).
    • 123. Xu XR, Carrim N, Neves MAD et al. Platelets and platelet adhesion molecules: novel mechanisms of thrombosis and anti-thrombotic therapies. Thromb J. 14(Suppl. 1), 29 (2016).
    • 124. Kim CR, Uemura T, Kitagawa S. Inorganic nanoparticles in porous coordination polymers. Chem. Soc. Rev. 45(14), 3828–3845 (2016).
    • 125. Malekkhaiat Häffner S, Malmsten M. Membrane interactions and antimicrobial effects of inorganic nanoparticles. Adv. Colloid Interface Sci. 248, 105–128 (2017).
    • 126. Fernandes LF, Bruch GE, Massensini AR, Frézard F. Recent advances in the therapeutic and diagnostic use of liposomes and carbon nanomaterials in ischemic stroke. Front. Neurosci. 12, 453 (2018).
    • 127. Vani JR, Mohammadi MT, Foroshani MS, Jafari M. Polyhydroxylated fullerene nanoparticles attenuate brain infarction and oxidative stress in rat model of ischemic stroke. EXCLI J. 15, 378–390 (2016).
    • 128. Zhao M, Wang C, Xie J, Ji C, Gu Z. Eco-friendly and scalable synthesis of fullerenols with high free radical scavenging ability for skin radioprotection. Small 17(37), e2102035 (2021).
    • 129. Chanaday NL, Nosyreva E, Shin OH et al. Presynaptic store-operated Ca2+ entry drives excitatory spontaneous neurotransmission and augments endoplasmic reticulum stress. Neuron 109(8), 1314–1332e5 (2021).
    • 130. Zhao Y, Shen X, Ma R, Hou Y, Qian Y, Fan C. Biological and biocompatible characteristics of fullerenols nanomaterials for tissue engineering. Histol. Histopathol. 36(7), 725–731 (2021).
    • 131. Lee HJ, Park J, Yoon OJ et al. Amine-modified single-walled carbon nanotubes protect neurons from injury in a rat stroke model. Nat. Nanotechnol. 6(2), 121–125 (2011).
    • 132. Hassanzadeh P, Arbabi E, Atyabi F, Dinarvand R. Nerve growth factor–carbon nanotube complex exerts prolonged protective effects in an in vitro model of ischemic stroke. Life Sci. 179, 15–22 (2017).
    • 133. Künzle M, Mangler J, Lach M, Beck T. Peptide-directed encapsulation of inorganic nanoparticles into protein containers. Nanoscale 10(48), 22917–22926 (2018).
    • 134. Gao Y, Chen X, Liu H. A facile approach for synthesis of nano-CeO2 particles loaded co-polymer matrix and their colossal role for blood–brain barrier permeability in cerebral ischemia. J. Photochem. Photobiol. B 187, 184–189 (2018).
    • 135. Taslimifar M, Faltys M, Kurtcuoglu V, Verrey F, Makrides V. Analysis of L-leucine amino acid transporter species activity and gene expression by human blood brain barrier hCMEC/D3 model reveal potential LAT1, LAT4, B0AT2 and y+LAT1 functional cooperation. J. Cereb. Blood Flow Metab. 42(1), 90–103 (2022).
    • 136. Daoud WA, Xin JH, Zhang YH. Surface functionalization of cellulose fibers with titanium dioxide nanoparticles and their combined bactericidal activities. Surface Sci. 599(1–3), 69–75 (2005).
    • 137. Kim CK, Kim T, Choi IY et al. Ceria nanoparticles that can protect against ischemic stroke. Angew. Chem. Int. Ed. 51(44), 11039–11043 (2012).
    • 138. Estevez AY, Pritchard S, Harper K et al. Neuroprotective mechanisms of cerium oxide nanoparticles in a mouse hippocampal brain slice model of ischemia. Free Radic. Biol. Med. 51(6), 1155–1163 (2011).
    • 139. Nelson BC, Johnson ME, Walker ML, Riley KR, Sims CM. Antioxidant cerium oxide nanoparticles in biology and medicine. Antioxidants 5(2), DOI: 10.3390/antiox5020015 (2016).
    • 140. Teleanu DM, Chircov C, Grumezescu AM, Volceanov A, Teleanu RI. Impact of nanoparticles on brain health: an up to date overview. J. Clin. Med. 7(12), DOI: 10.3390/jcm7120490 (2018).
    • 141. Cui J, Chen X, Zhai X et al. Inhalation of water electrolysis-derived hydrogen ameliorates cerebral ischemia–reperfusion injury in rats – a possible new hydrogen resource for clinical use. Neuroscience 335, 232–241 (2016).
    • 142. Xie K, Wang Y, Yin L et al. Hydrogen gas alleviates sepsis-induced brain injury by improving mitochondrial biogenesis through the activation of PGC-α in mice. Shock 55(1), 100–109 (2021).
    • 143. Li Z, Chen K, Shao Q et al. Nanoparticulate MgH2 ameliorates anxiety/depression-like behaviors in a mouse model of multiple sclerosis by regulating microglial polarization and oxidative stress. Neuroinflammation 20(1), 16 (2023).
    • 144. Cruz CCR, Da Silva NP, Castilho AV et al. Synthesis, characterization and photothermal analysis of nanostructured hydrides of Pd and PdCeO2. Sci. Rep. 10(1), 17561 (2020).
    • 145. Zhang D, Liu L, Wang J et al. Drug-loaded PEG-PLGA nanoparticles for cancer treatment. Front. Pharmacol. 13, 990505 (2022).
    • 146. Pastorino L, Dellacasa E, Petrini P, Monticelli O. Stereocomplex poly(lactic acid) nanocoated chitosan microparticles for the sustained release of hydrophilic drugs. Mater. Sci. Eng. C 76, 1129–1135 (2017).
    • 147. Azadmanesh J, Borgstahl GEO. A review of the catalytic mechanism of human manganese superoxide dismutase. Antioxidants 7(2), DOI: 10.3390/antiox7020025 (2018).
    • 148. Zhao H, Zhang R, Yan X, Fan K. Superoxide dismutase nanozymes: an emerging star for anti-oxidation. J. Mater. Chem. B 9(35), 6939–6957 (2021).
    • 149. Reddy MK, Labhasetwar V. Nanoparticle-mediated delivery of superoxide dismutase to the brain: an effective strategy to reduce ischemia–reperfusion injury. FASEB J. 23(5), 1384–1395 (2009).
    • 150. Petro M, Jaffer H, Yang J, Kabu S, Morris VB, Labhasetwar V. Tissue plasminogen activator followed by antioxidant-loaded nanoparticle delivery promotes activation/mobilization of progenitor cells in infarcted rat brain. Biomaterials 81, 169–180 (2016).
    • 151. Chen J, Cheng D, Li J et al. Influence of lipid composition on the phase transition temperature of liposomes composed of both DPPC and HSPC. Drug Dev. Ind. Pharm. 39(2), 197–204 (2013).
    • 152. Mitragotri S, Burke PA, Langer R. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat. Rev. Drug Discov. 13(9), 655–672 (2014).
    • 153. Andonova V, Peneva P. Characterization methods for solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC). Curr. Pharm. Des. doi:10.2174/1381612823666171115105721 (2017) (Epub ahead of print).
    • 154. Partoazar A, Nasoohi S, Rezayat SM et al. Nanoliposome containing cyclosporine A reduced neuroinflammation responses and improved neurological activities in cerebral ischemia/reperfusion in rat. Fundam. Clin. Pharmacol. 31(2), 185–193 (2017).
    • 155. Smoleński M, Karolewicz B, Gołkowska AM, Nartowski KP, Małolepsza-Jarmołowska K. Emulsion-based multicompartment vaginal drug carriers: from nanoemulsions to nanoemulgels. Int. J. Mol. Sci. 22(12), DOI: 10.3390/ijms22126455 (2021).
    • 156. Elzayat A, Adam-Cervera I, Álvarez-Bermúdez O, Muñoz-Espí R. Nanoemulsions for synthesis of biomedical nanocarriers. Colloids Surf. B 203, 111764 (2021).
    • 157. Singh Y, Meher JG, Raval K et al. Nanoemulsion: concepts, development and applications in drug delivery. J. Control. Rel. 252, 28–49 (2017).
    • 158. Burger C, Shahzad Y, Brummer A, Gerber M, Du Plessis J. Traversing the skin barrier with nano-emulsions. Curr. Drug Deliv. 4(4), 458–472 (2017).
    • 159. Yadav S, Gandham SK, Panicucci R, Amiji MM. Intranasal brain delivery of cationic nanoemulsion-encapsulated TNF-α siRNA in prevention of experimental neuroinflammation. Nanomedicine 2(4), 987–1002 (2016).
    • 160. Azambuja JH, Schuh RS, Michels LR et al. Nasal administration of cationic nanoemulsions as CD73-siRNA delivery system for glioblastoma treatment: a new therapeutical approach. Mol. Neurobiol. 57(2), 635–649 (2020).
    • 161. Ghosh B, Biswas S. Polymeric micelles in cancer therapy: state of the art. J. Control. Rel. 332, 127–147 (2021).
    • 162. Kotta S, Aldawsari HM, Badr-Eldin SM, Nair AB, Yt K. Progress in polymeric micelles for drug delivery applications. Pharmaceutics 14(8), DOI: 10.3390/pharmaceutics14081636 (2022).
    • 163. Jin GW, Rejinold NS, Choy JH. Multifunctional polymeric micelles for cancer therapy. Polymers 14(22), DOI: 10.3390/polym14224839 (2022).
    • 164. Okamura K, Tsubokawa T, Johshita H, Miyazaki H, Shiokawa Y. Edaravone, a free radical scavenger, attenuates cerebral infarction and hemorrhagic infarction in rats with hyperglycemia. Neurol. Res. 36(1), 65–69 (2014).
    • 165. Higashi Y. Edaravone for the treatment of acute cerebral infarction: role of endothelium-derived nitric oxide and oxidative stress. Expert Opin. Pharmacother. 10(2), 323–331 (2009).
    • 166. Le Guyader G, Do B, Rietveld IB et al. Mixed polymeric micelles for rapamycin skin delivery. Pharmaceutics 14(3), DOI: 10.3390/pharmaceutics14030569 (2022).
    • 167. Shin YB, Choi JY, Shin DH, Lee JW. Anticancer evaluation of methoxy poly(ethylene glycol)-b-poly(caprolactone) polymeric micelles encapsulating fenbendazole and rapamycin in ovarian cancer. Int. J. Nanomed. 8, 2209–2223 (2023).
    • 168. Jelonek K, Li S, Kaczmarczyk B et al. Multidrug PLA-PEG filomicelles for concurrent delivery of anticancer drugs – the influence of drug–drug and drug–polymer interactions on drug loading and release properties. Int. J. Pharm. 510(1), 365–374 (2016).
    • 169. Cheng CC, Liang MC, Liao ZS, Huang JJ, Lee DJ. Self-assembled supramolecular nanogels as a safe and effective drug delivery vector for cancer therapy. Macromol. Biosci. 17(5), DOI: 10.1002/mabi.201600370 (2017). • Introduces how nanomedicines can play a role in the treatment of cancer, which is a hot topic in nanomedicine research.
    • 170. Mura P. Advantages of the combined use of cyclodextrins and nanocarriers in drug delivery: a review. Int. J. Pharm. 579, 119181 (2020).
    • 171. Luo T, Wang J, Hao S et al. Brain drug delivery systems for the stroke intervention and recovery. Curr. Pharm. Des. 23(15), 2258–2267 (2017).